Bayesian inverse problems with Gaussian priors
نویسندگان
چکیده
منابع مشابه
Gaussian Markov Random Field Priors for Inverse Problems
In this paper, our focus is on the connections between the methods of (quadratic) regularization for inverse problems and Gaussian Markov random field (GMRF) priors for problems in spatial statistics. We begin with the most standard GMRFs defined on a uniform computational grid, which correspond to the oft-used discrete negative-Laplacian regularization matrix. Next, we present a class of GMRFs...
متن کاملBayesian inference with rescaled Gaussian process priors
Abstract: We use rescaled Gaussian processes as prior models for functional parameters in nonparametric statistical models. We show how the rate of contraction of the posterior distributions depends on the scaling factor. In particular, we exhibit rescaled Gaussian process priors yielding posteriors that contract around the true parameter at optimal convergence rates. To derive our results we e...
متن کاملEstimating Bayesian Decision Problems with Heterogeneous Priors
In many areas of economics there is a growing interest in how expertise and preferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decision making. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisions ov...
متن کاملBayesian Image Segmentation Using Gaussian Field Priors
The goal of segmentation is to partition an image into a finite set of regions, homogeneous in some (e.g., statistical) sense, thus being an intrinsically discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems. This paper p...
متن کاملA Scalable Algorithm for Map Estimators in Bayesian Inverse Problems with Besov Priors
We present a scalable solver for approximating the maximum a posteriori (MAP) point of Bayesian inverse problems with Besov priors based on wavelet expansions with random coefficients. It is a subspace trust region interior reflective Newton conjugate gradient method for bound constrained optimization problems. The method combines the rapid locally-quadratic convergence rate properties of Newto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2011
ISSN: 0090-5364
DOI: 10.1214/11-aos920